ETL Data Engineering with
Azure & Tata Store Data

Building a Cloud-Based Data Pipeline for Advanced Analytics

A hands-on project leveraging Azure Data
Factory, Databricks, Synapse Analytics &
Power Bl

Muhammed Sinan
DSE MBA Business Analytics

Project Overview

e Dataset: Tata Store Sales Data from Kaggle
(541,910 rows, 9 columns)

e Goal: Build an end-to-end ETL pipeline for data
transformation, warehousing, and visualization

e Tools Used: Azure Data Factory, Data Lake,
Databricks (PySpark), Synapse Analytics, Power
Bl

e Key Outputs:
Star Schema Data Model
SQL-Based Business Analytics
Interactive Power Bl Dashboard

Project Workflow &
Architecture

Data Ingestion - Data Storage - Data
Transformation » Data Warehousing -
Data Visualization

Data Ingestion & Storage

e Source Data: Tat Retail Dataset from
Kaggle. Link

e Ingestion: Uploaded to GitHub -
Connected to Azure Data Lake Storage
via Azure Data Factory

e Storage Management:
o Raw data stored in Raw Zone
o Processed data stored In
Transformed Zone

https://www.kaggle.com/datasets/ishanshrivastava28/tata-online-retail-dataset

Data Transformation with
Databricks (PySpark)

Goal: Convert flat data into a star schema

model
Process:

Data Cleaning, Normalization, and
Transformation using PySpark in Databricks
Star Schema Tables:

~act_Sales
Dim_Date
Dim_Product
Dim_Customer

Dim_Country

- +* 2 daysago (<1s) 1 Pythen

from pyspark.sql.functions import col,to_timestamp,year,month,dayofmonth, weekofyear,regexp_replace,substring,monotonically_increasing_id,

round,when,dayofweek,quarter

B v 2days ago(24s) 2 Python . T

%python

Check if the directory is already mounted

if any(mount.mountPoint == '/mnt/tata-etl-data' for mount in dbutils.fs.mounts()):
dbutils.fs.unmount('/mnt/tata-etl-data")

Define the configurations
configs = {
"fs.azure.account.auth.type": "OAuth",
"fs.azure.account.oauth.provider.type": "org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider”,
“fs.azure.account.oauth2.client.id": "981623el-dc7c-41c2-92el1-8e9818c250ec"”,
"fs.azure.account.ocauth2.client.secret™: 'BBT3Q~618086Nn3MS)TFXqPYHLDfpCUmKFHU--Qas9”’,
"fs.azure.account.oauth2.client.endpoint”: "https://login.microsoftonline.com/b74ecbh77-a7le-4179-b670-f6Bbd5eet77c/oauth2/token"

Mount the directory

dbutils, fs.mount(
source="abfss://tata-etl-data@tataetldata2.dfs.core.windows.net™, # container@storageacc
mount_point="/mnt/tata-etl-data",

»> + 2 days ago (1s) 3

kfs
1s "/mnt/tata-etl-data"

Table ~ + Q Y O

2% path 2% name 123 size 1%; modificationTime
1 dbfs;/mnt/tata-etl-data/raw-data/ raw-data/ 0 1738738868000
2 dbfs;/mnt/tata-etl-data/transformed-data/ transformed-dat... 0 1738738877000
-
¥ 2rows | 1.45s runtime Refreshed 2 days ago
[+ 2 days ago (1s) 4

spark

[2 ~ 2 days ago (15)

5

retail data = spark.read.format("csv").option("header","true").load("/mnt/tata-etl-data/raw-data/retailData™)
retail data.show()

» (2) Spark Jobs

» & retail_data: pyspark.sqgl.dataframe.DataFrame = [InvoiceNo: string, StockCode: string ... 6 more fields]
536365	84406B	CREAM CUPID HEART...	8101-12-2010 08:26	2.75] 17850	United Kingdom]	
536365	84029G	KNITTED UNION FLA...	6	01-12-2010 08:26	3.39] 17850	United Kingdom
536365	84029E	RED WOOLLY HOTTIE...	6	01-12-2010 08:26	3.39] 17850	United Kingdom
536365	22752	SET 7 BABUSHKA NE...	2	@1-12-2010 08:26	7.65] 17850	United Kingdom
536365	21730	GLASS STAR FROSTE...	6	01-12-2010 08:26	4.25] 17850	United Kingdom
536366	22633	HAND WARMER UNION...	6	01-12-20106 08:28	1.85] 17850	United Kingdom
536366	22632	HAND WARMER RED P...	6	01-12-20106 08:28	1.85] 17850	United Kingdom
536367	84879	ASSORTED COLOUR B...	32	81-12-2016 038:34]	1.69] 13847	United Kingdom
536367	22745	POPPY'S PLAYHOUSE...	6	01-12-2010 058:34]	2.1] 13047	United Kingdom
536367	22748	POPPY'S PLAYHOUSE...	6	01-12-2010 08:34]	2.1} 13047	United Kingdom
536367	22749	FELTCRAFT PRINCES...	g8	e1-12-2010 058:34	3.75] 13047	United Kingdom

from pyspark.sql.functions import col, to_timestamp, regexp_replace

Cast columns to appropriate data types and clean invoiceID

retail data = retail data.withColumn{"Quantity", col("Quantity").cast("int")) \
-withColumn("UnitPrice"”, col("UnitPrice”).cast("double™)) \
.withColumn("CustomerID", col("CustomerID")}.cast("int")) \
.withColumn("InvoiceDate", to_timestamp("InvoiceDate"”, "MM-dd-yyyy HH:mm")) \
withColumn(“InvoiceNo", regexp_replace(col("InvoiceNo"), r"[*8-91", "")I\
-withColumn("StockCode", regexp_replace(col("StockCode™), r"[*0-9]", ""))\
.withColumn("description", col("description").cast("string"))\

»

.withColumn("description”, regexp_replace(col("description”), r"[*\\x@@-\\x7F]", ""))

Display updated schema

retail data.printSchema()

Display the data to check the changes
display(retail data)

¥ (1) Spark Jobs

~ B retail_data: pyspark.sgl.dataframe.DataFrame
InvoiceNo: string
StockCode: string
description: string
Quantity: integer

InvoiceDate: timestamp

P v 2daysago(ls)

DimProduct = retail data.select("StockCode","Description")\
.distinct()\
.withColumn({"ProductID",monotonically increasing id())\

.withColumnRenamed("StockCode", "ProductCode")\

.withColumn{"description”, substring(“descriptien", 1, 188))

display(DimProduc

» (3) Spark Jobs

t)

» B DimProduct: pyspark.sgl.dataframe.DataFrame = [ProductCode: string, description: string ... 1 more field]

Table ~ +

th ProductCode

1 85231
2 22335
3 22649
4 84459
5 21161
5 21784

Q¥

ABC description 12:3 ProductiD

ORANGESCENTEDSETOTLIGHTS 0
HEARTDECORATIONPAINTEDZINC 1
STRAWBERRYFAIRYCAKETEAPOT 2
YELLOWMETALCHICKENHEART 3
KEEPOUTBOYSDOORHANGER 4
SHOESHINEBOX 5

» v 2daysago(ls)

11: h Python < [&

DimCountry = retail data.select("Country™) \
.distinct() \

.withColumnRenamed("Country"”, "Countryname™) \

.withColumn({"CountryID" ,monotonically_increasing_id())

display(DimCountry)

P (2) Spark Jobs

» & DimCountry: pyspark.sql.dataframe.DataFrame = [Countryname: string, CountryID: long]

Table ~ +

ABC Countryname

1 ANVTUITHT

2 Singapore
3 Germany
4 France

5 Greece

& Belgium
7 Finland

123 CountrylD

> " 2 days ago (4s)

DimDate = retail data.select("InvoiceDate") \

.distinct() \

.withColumn("DateID",monotonically increasing id())\

.withColumn("Year", vear("InvoiceDate™))} \

.withColumn("Month", month("InvoiceDate™)) \

.withColumn("Day", dayofmonth("InvoiceDate")) \

.withColumn("Week", weekofyear("InvoiceDate™))\

.withColumn("Quarter", quarter("InvoiceDate™)) \
.withColumn("DayOfWeek", dayofweek("InvoiceDate")) Y
.withColumn("IsWeekend", when(col("DayOfheek").isin([6, 7]), 1).otherwise(8))

display(DimDate)

b (2) Spark Jobs

10

» E DimDate: pysparksqgl.dataframe.DataFrame = [InvoiceDate: timestamp, DatelD: long ... 7 more fields]

Table ~ +

F@' InvoiceDate

1 2010-01-12T11:41:00.000+00:...
2 2010-02-12T11:45:00.000+00:....
3 2010-02-12T12:59:00.000+00:...
4 2010-06-12T15:25:00.000+00:...
5 2010-07-12708:28:00.000+00:...

P v 2daysago(ls)

123 DatelD

123 Year

DimCustomer = retail data.select("CustomerID") Y\

.distinct() \

2010
2010
2010
2010
2010

123 Month

.withColumnRenamed("CustomerID", "CustomerCode")

=

(=2 TR A T (]

.withColumn{"CustomerID",monotonically increasing_id())

display(DimCustomer)

b (2) Spark Jobs

123 Day

» & DimCustomer: pyspark.sgl.dataframe.DataFrame = [CustomerCode: integer, CustoamerlD: long]

Table ~ +

123 CustomerCode

1 17420
2 16861
3 16503
4 15727
5 17389
6 15447

123 CustomerlD

—_

L5 IR - V& I

12
12
12
12
12

123 Weel

23
28

12:3 Quarter

Q¥ O

123 DayOfWeek 123 Is\Weeke

[N I = R =) B V8

Python € 3 ¢

from pyspark.sql.functions import monotonically increasing_id, round

Create the fact_sales table with a unigue SalesID and round the salesAmount
fact _sales = retail data.select(
monotonically increasing id().alias("SalesID"),
col("InvoiceNo").alias("invoiceNQ"),
col("StockCode").alias("productCode™),
col("CustomerID"),
col("InvoiceDate™),
col("Quantity"),
col("UnitPrice™),
round({col("Quantity") * col("UnitPrice")), 1).alias("salesAmount"), # Round to 1 decimal
col ("Country")

Join fact sales with the dimension tables to fetch the corresponding foreign keys

fact_sales = fact_sales.join(DimCustomer, fact_sales.CustomerID == DimCustomer.CustomerCode, "left"))\
.join(DimProduct, fact sales.productCode == DimProduct.ProductCode, "left") \
.join(DimCountry, fact sales.Country == DimCountry.Countryname, "left") \

.join{DimDate, fact_sales.InvoiceDate == DimDate.InvoiceDate, "left")

Remove any duplicates after the join (if any) and reset SalesID
fact_sales = fact _sales.distinct()

Reassign SalesID to ensure uniqueness

» v 2 days ago (12s) 12

Select the required columns with correct foreign key references
fact_sales = fact_sales.select(
"SalesID", # Unique SalesID
"invoiceNO", # Corrected column name
DimCustomer.CustomerID.alias("CustomerID"), # Foreign Key for Customer
DimProduct.ProductID.alias("ProductID"), # Foreign Key for Product
DimCountry.CountryID.alias("CountryID"), # Foreign Key for Country
DimDate.DatelID.alias("DateID"), # Foreign Key for Date
"Quantity",
"UnitPrice",

"salesAmount™

fact_sales = fact_sales.filter(
(fact_sales.Quantity.isNotNull()) &
(fact_sales.UnitPrice.isNotNull()) &
(fact sales.CustomerID.isNotNull())

Check the schema and display the result
fact_sales.printSchema()
display(fact_sales)

[2 “" 2 days ago (255) 13

fact sales.repartition(l).write.mode("overwrite").option("header","true"). csv("/mnt/tata-etl-data/transformed-data/fact sales/")
DimCustomer.repartition(1).write.mode("overwrite").option("header", "true") . csv("/mnt/tata-etl-data/transformed-data/DimCustomer/")
DimProduct.repartition(1).write.mode("overwrite").option("header”,"true").csv("/mnt/tata-etl-data/transformed-data/DimPraoduct/")
DimCountry.repartition(l).write.mode("overwrite").option("header","true") . csv("/mnt/tata-etl-data/transformed-data/DimCountry/")

DimDate.repartition(1).write.mode("overwrite").option("header","true").csv("/mnt/tata-etl-data/transformed-data/DimDate/")

» (26) Spark Jobs

All the PySpark code will process and

transform the raw data, resulting in the
structured dataset shown below.

Home » Storage accounts > tataetldata2 | Containers »

- tata-etl-data

Container
| L Search ‘ X« T Upload -+ Add Directory () Refresh
| 7 Overview Authentication method: Access key (Switch to Microsoft Entra user account)

Location: tata-ctl-data / transformed-data
ﬁ Diagnose and solve problems

Search blobs by prefix (case-sensitive)

%3\ Access Control (1AM)

~ Settings
Name Modified Access tier Archive status

S5 Shared access tokens

] ™
pp\ Manage ACL

D DimCountry 2/6/2025, 11:02:29 AM

Access policy

D DimCustomer 2/6/2025, 11:02:25 AM
! Properties

D DimDate 2/6/2025, 11:02:33 AM
) Metadata

D DimProduct 2/6/2025, 11:02:27 AM

D fact_sales 2/6/2025, 11:02:19 AM

Data Warehousing with
Azure Synapse Analytics

Goal: Store structured data & run SQL-based
analytics

Key SQL Queries & Insights:
e Retention Rate & Churn Rate Analysis
e Country-wise Sales Analytics
e Customer Segmentation (New vs. Returning
Customers)
e Fast-Moving Products Analysis

SQL Query for
1- Basic overview of sales performance

O TataRetailDataBase ® Basic Sales Summary X

> Run Connectto | @ Built-in Use database | TataRetailDataBase

/* This query provides a high-level overview of sales performance */

SELECT
COUNT(DISTINCT invoiceNQ) AS Unique_Invoices,
SUM(Quantity) AS Total Quantity Sold,
ROUND(sum(salesAmount),1) AS Total Sales Amount
FROM fact_sales;

Result

Unique_Invoices Total_Quantity Sold Total _Sales Amount

22180 8168719 14637117.3

SQL Query for

2-Peak Sales Time Analysis

1 /* Peak Sales Time Analysis */
2
3 SELECT
A d.DayOflWeek,
5 COUNT(DISTINCT f.involceNO) AS TotalTransactions,
6 ROUND(SUM(T.salesAmount),1) AS TotalRevenue
7 FROM fact sales f
8 JOIN DimDate d ON f.DateID = d.DatelD
9 GROUP BY d.DayOflkeek
1@ ORDER BY TotalRevenue DESC

Result
DayOfWeek TotalTransactions TotalRevenue
3 1541 1271992.5
6 1597 1050076.6
1 1435 9592917

2 1204 741499.1

SQL Query for
3-Average Spending By Customer

SELECT
d.CountryName as country,
COUNT(DISTINCT f.invoiceNO) as Uniquelnvoices,
COUNT (DISTINCT f.customerID) as UniqueCustomers,
ROUMD(sum(f.salesAmount),1) as TotalRevenue,
ROUMD(sum(f.salesAmount),1)/COUNT(DISTINCT f.customerID) AS AverageSpendingByCustomer
FROM fact_sales f
JOIN DimCountry d on f.countryID = d.countryID
GROUP BY d.CountryName
ORDER BY TotalRevenue DESC

Messages

country Uniquelnvoices UniqueCustomers TotalRevenue AverageSpendingByCustomer

United Kingdom 9857 3950 11294742.3 2859.428430379747
Germany 603 95 5893839
France 458 491241

Netherlands 0 : 484468.4

SQL Query for

4-Cross sell and up-sell Oppertunities

/* Cross-Sell and Up-sell Oppertunities */

SELECT

Result

a.ProductID AS ProductA,
b.ProductID As ProductB,
COUNT(*) AS PairCount
FROM fact sales a
JOIN fact sales b ON a.invoiceNO = b.invoiceNO AND a.ProductID < b.ProductID

GROUP BY a.ProductID,b.ProductID
NRNFR BRY PairCount NESC

View Chart I— Export results

‘ L Search
ProductA ProductB PairCount
1158 2940 5158
1158 3828 5158
1158 3180 5158
3180 3828 5158

SQL Query for

5-Fast-moving Products

Fast-Moving Products

SELECT Top 10
d.ProductCode,
COUNT(DISTINCT f.SalesID) AS TotalSales,
ROUND{SUM(f.salesAmount), 1) AS TotalRevenue
FROM fact sales T
JOIN DimProducts d ON f.productID = d.productID
WHERE d.ProductCode IS NOT NULL

W00~ O N B W M

o
v

Group By d.ProductCode
ORDER By TotalSales DESC

[
=t

Result
View Chart I— Export results ™
| £ Search
ProductCode TotalSales TotalRevenue
85049 15026 134290.2
85099 12048 546434

SQL Query for

6-Customer Purchase Frequency

1 /* Customer Purchase Frequency */

2

3 SELECT TOP 16

il f.CustomerlD,

5 COUNT(DISTINCT f.invoiceNO) as PurchaseFrequency,

6 ROUND(SUM(T.salesAmount),1) as TotalRevenue

7 FROM fact sales f

8 GROUP BY f.customerID

9 ORDER By TotalRevenue DESC
16
11 /* This query
12 - Helps identify high-value customers (HVCs) who contribute the most revenue.
13 - Shows which customers are frequent buyers and which ones make one-time purchases.
14 - Can be used for loyalty programs or targeted marketing campaigns.

CustomerlD PurchaseFrequency TotalRevenue
1119 77 470899.2
339 62 3343324
1224 &R 21NENS 1

& 00:00:01 Query executed successfully.

SQL Query for
7-New Vs Retaining Customer Analysis

WITH FirstPurchase AS (
SELECT
customerlID,
MIN(d.DateID) As FirstPurchaseDateID
FROM fact sales f
JOIN DimDate d on f.DateID = d.DateID
Group By customerID

)

SELECT
d.Year,
d.Month,

COUNT(DISTINCT CASE WHEN f.DateID = fp.FirstPurchaseDateId THEN f.customerID END) AS NewCustomers,

COUNT(DISTINCT CASE WHEN f.DateID > fp.FirstPurchaseDateId THEN f.customerID END) AS ReturningCustomer
FROM fact sales f
JOIN DimDate d OM f.DateID = d.DateID
JOIN FirstPurchase fp OM f.customerID
GROUP By d.Year, d.Month
ORDER By d.Year DESC, d.Month DESC

fp.customerID

Year Month NewCustomers ReturningCustomer
2011 12 170 284
2011 11 229 372
2011 10 237 329
2011 9 196 323
2011 8 217 390
2011 7 243 412
2011 6 268 426

SQL Query for

8-Retention and Churn Rates

B TataRetailDataBase L] Basic Sales Summary Cross-Sell And Up-S... @ Customer Loyalty Se... @ Customer Purchase F... Customer Retention...

> Run N Connect to | @ Built-in | Use database | TataRetailDataBase @)

1 WITH monthlySales AS (

2 SELECT

3 f.customerin,

4 d.vear,

5 d.Month,

6 COUNT(DISTINCT f.invoiceNO) As purchaseCount

7 FROM fact_sales f

8 JOIN DimDate d on (f.DateID = d.DatelID)

9 GROUP By f.customerID,d.Year,d.Month

10 ,

11 Retention as (

12 SELECT

13 ms.Year,

14 ms.Month,

15 COUNT(DISTINCT ms.customerID) AS ActiveCustomers,
16 COUNT(DISTINCT CASE WHEN prev_ms.customerID IS NOT NULL THEN ms.customerID END) AS ReturningCustomers
17 FROM monthlySales ms

18 LEFT JOIN monthlysales prev_ms

19 ON ms.customerID = prev_ms.customerID

20 AND ms.Year = prev_ms.Year

21 AND ms.Month = prev_ms.Month+1

22 GROUP By ms.Year,ms.Month

23)

24 SELECT

25 Year,

26 Month,

27 ActiveCustomers,

28 ReturningCustomers,

29 ROUND(106@ * ReturningCustomers / NULLIF(ActiveCustomers,®) , 2) As RetentionRate,

Result

Year Month ActiveCustomers ReturningCustomers RetentionRate ChurnRate
2011 12 428 116 27 73
2011 11 568 131 23 i7
2011 10 537 111 20 80
2011 9 494 129 26 74
2011 8 af2 159 27 73

& 00:00:03 Query executed successfully.

SQL Query for

9-Customer Segmentation

1 with customerActivity AS (

2 SELECT

3 f.customeripD,

4 COUNT(Distinct f.invoiceNO) AS Purchasefrequency,

5 DATEDIFF(DAY, Max(d.invoiceDate), GETDATE()) AS Recency,
6 ROUND(SUM(T.salesAmount),1) AS TotalSpending

7 FROm fact sales f

8 JOIN DimDate d on f.DateID = d.DateID

9 GROUP By f.CustomerID),

18 CustomerSegments AS(

11 SELECT

12 ca.customerlID,

13 ca.Purchasefrequency,

14 ca.TotalSpending,

15 ca.Recency,

16 CASE

17 WHEMN ca.PurchaseFrequency > 100 AND ca.TotalSpending >5600 THEN 'VIP Customer’
18 WHEN ca.PurchaseFrequency BETWEEN 56 AMD 16@ THEM 'Loyal Customer’
19 WHEN ca.PurchasefFrequency = 1 THEN ‘New Customer’

20 WHEN ca.Recency BETWEEN 16 AND 180 THEN 'At-Risk Customer’

21 ELSE 'Churned Customer'

22 END AS Customersegment

23 FROM customerActivity cab

24 SELECT

25 Customersegment,

26 COUNT(*) AS CustomerCount

27 FROM Customersegments cs
28 GROUP By cs.CustomerSegment

Result

CustomerSegment CustomerCount
Churned Customer 1742

MNew Customer 1378

Loyal Customer 4

VIP Customer I

SQL Query for
10-Country wise revenue Analysis

/* This query helps compare each country’s revenue contribution to the total sales.*/

SELECT
d.CountryName as country,
COUNT(DISTINCT f.invoiceNO) as UniqueInvoices,
COUNT(DISTINCT f.customerID) as UniqueCustomers,
ROUND(sum(f.salesAmount),1) as TotalRevenue,
ROUND(sum(f.salesAmount),1)/COUNT(DISTINCT f.customerID) AS AverageSpendingByCustomer
FROM fact sales f
JOIN DimCountry d on f.countryID = d.countryID
GROUP BY d.CountryName
ORDER BY TotalRevenue DESC

Messages

Result

country Uniquelnvoices UniqueCustomers TotalRevenue AverageSpendingByCustom

United Kingdom 3857 3950 112947423

Germany 603 35 5993383.9

France 458 497241

Metherlands (0 : 4844684

Data Visualization with Power Bl

Goal: Build an interactive decision-support dashboard
Key Visuals in Power Bl Dashboard:
e Revenue Trends & Growth Analysis &l
e Customer Behavior: New vs. Returning Customers @
e Product Performance Analysis ¥
e Sales Breakdown by Country &

Tata Retail Store Sales Analytics P \,} | VJ |

|l | Al
L .

Customers over gquarters

Sales over quarters 1,500 18370 o
1237
14. 64M 659 63 335K
Total R 192% 236% Quarters 1,000
Otr 1
87.01 12.99 568
- * eqt s 255 o,
Churn Rate Retention Rate Returning Customers @®Qtr 4 .
27.2% 30.0% =
Qtr1 Qtr2 Qtr3 Qt4 Otr1 Q2 Qir3 Qird
2010 2011
Fast-moving Products Sales over quarters Sales by Countries
2.0M
12.0K 11.8K 1.70M
United Kingdom 11.3M
1.5M ji2mM
10K 1.21M
83K German y 0.6M
?.UK 1.0M
1.06M F e 0.5M
5K 4.3K 38K "
. 0.22M MNetherlands 0.5M
022M (o sl
0.0M EIRE [| 0.4M
oK | | i B . Otr1 Qtr2 Qr3 Qtrd - Qtr1 Qtr2 Qtr3 Qtrd
85000 84997 85123 47566 23084 22423 2010 : 201

oM 5M 10M

Key Learnings & Takeaways

e Skills Gained:

o '/ Cloud-Based Data Engineering with Azure

o Data Transformation with PySpark in Databricks
e '/ Data Warehousing with Azure Synapse Analytics
e [Data Visualization with Power Bl

e Challenges Faced & Solutions:
o Handling large datasets efficiently
o Optimizing SQL queries for performance
o Data schema design for better reporting
o Data Cleaning

Thank You & Let's
Connect!

"Data is the new oil. But refining it makes all the
difference!"

LinkedIn | GitHub | sinankmuriyanal@gmail.com

Open to feedback, discussions, and collaboration!

https://www.linkedin.com/in/muhammed-sinan-143a06218/
https://github.com/sinankmuriyanal

